Cramer's Rule
For any $n \times n$ matrix A and any \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b}

$$
A_{i}(\mathbf{b})=\left[\begin{array}{lllll}
\mathbf{a}_{1} & \cdots & \mathbf{b} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

Theorem 7 Cramer's Rule
Let A be an invertible $n \times n$ matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
\begin{equation*}
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

Example 1. Use Cramer's rule to compute the solution of the system.
$4 x_{1}+x_{2}=6$
$3 x_{1}+2 x_{2}=5$
The system is equivalent to $A \vec{x}=\vec{b}$, where $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right], \vec{b}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$. Compute $A_{1}(b)=\left[\begin{array}{ll}6 & 1 \\ 5 & 2\end{array}\right], A_{2}(b)=\left[\begin{array}{ll}4 & 6 \\ 3 & 5\end{array}\right]$
$\operatorname{det} A=5, \quad \operatorname{det} A_{1}(b)=7, \quad \operatorname{det} A_{2}(b)=2$
Then

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(b)}{\operatorname{det} A}=\frac{7}{5}, \quad x_{2}=\frac{\operatorname{det} A_{2}(b)}{\operatorname{det} A}=\frac{2}{5} \\
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{7}{5} \\
\frac{2}{5}
\end{array}\right]
\end{aligned}
$$

A Formula for A^{-1}
For an invertible $n \times n$ matrix A, the j-th column of A^{-1} is a vector x that satisfies

$$
A \mathbf{x}=\mathbf{e}_{j}
$$

the i-th entry of \mathbf{x} is the (i, j)-entry of A^{-1}. By Cramer's rule,

$$
\begin{equation*}
\left\{(i, j) \text {-entry of } A^{-1}\right\}=x_{i}=\frac{\operatorname{det} A_{i}\left(\mathbf{e}_{j}\right)}{\operatorname{det} A} \tag{2}
\end{equation*}
$$

Recall $A_{j i}$ denotes the submatrix of A formed by deleting row j and column i, thus

$$
\begin{array}{ll}
\operatorname{det} A_{i}\left(\mathbf{e}_{j}\right)=(-1)^{i+j} \operatorname{det} A_{j i}=C_{j i} \quad & \text { Recall the } \\
& \text { contactor } C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
\end{array}
$$

where $C_{j i}$ is a cofactor of A.
Thus

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \tag{3}\\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

Remark: The (i, j)-entry of A^{-1} is $\frac{1}{\operatorname{det} A} C_{j i}$

The matrix of cofactors on the right side of (3) is called the adjugate (or classical adjoint) of A, denoted by adj A.

Theorem 8 An Inverse Formula
Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

Example 2. Compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

$$
A=\left[\begin{array}{lll}
3 & 5 & 4 \\
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

ANS: $\operatorname{det} A=6$. We compute the cofactors:

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} \operatorname{det} A_{11}=\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-1 \\
& C_{12}=(-1)^{1+2} \operatorname{det} A_{12}=-1\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|=1 \\
& C_{13}=(-1)^{1+3} \operatorname{det} A_{13}=\left|\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right|=1
\end{aligned}
$$

$$
\begin{aligned}
& C_{21}=-\left|\begin{array}{ll}
5 & 4 \\
1 & 1
\end{array}\right|=-1 \\
& C_{22}=\left|\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right|=-5 \\
& C_{23}=-\left|\begin{array}{ll}
3 & 5 \\
2 & 1
\end{array}\right|=7 \\
& C_{31}=\left|\begin{array}{ll}
5 & 4 \\
0 & 1
\end{array}\right|=5 \\
& C_{32}=-\left|\begin{array}{ll}
3 & 4 \\
1 & 1
\end{array}\right|=1 \\
& C_{33}=\left|\begin{array}{ll}
3 & 5 \\
1 & 0
\end{array}\right|=-5 \\
& a_{1} A=\left[\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & 5 \\
1 & -5 & 1 \\
1 & 7 & -5
\end{array}\right] \\
& A^{-1}=\frac{1}{\operatorname{det} A} \text { adj } A=\left[\begin{array}{lll}
-\frac{1}{6} & -\frac{1}{6} & \frac{5}{6} \\
\frac{1}{6} & -\frac{5}{6} & \frac{7}{6} \\
\frac{1}{6} & \frac{7}{6} & -\frac{5}{6}
\end{array}\right]
\end{aligned}
$$

Remark: This method is useful if the question asks What is (i, j)-entry of A^{-1} ?

$$
\left(A^{-1}\right)_{i j}=\frac{1}{\operatorname{det} A} C_{j i} \quad E g: \quad\left(A^{-1}\right)_{23}=\frac{1}{\operatorname{det} A} \cdot C_{32}=\frac{1}{6}
$$

Determinants as Area or Volume

Theorem 9 If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

Remark.

1. Let \mathbf{a}_{1} and \mathbf{a}_{2} be nonzero vectors. Then for any scalar c, the area of the parallelogram determined by \mathbf{a}_{1} and \mathbf{a}_{2} equals the area of the parallelogram determined by \mathbf{a}_{1} and $\mathbf{a}_{2}+c \mathbf{a}_{1}$.

FIGURE 2 Two parallelograms of equal area.
2. An example of the parallelepiped determined by the vectors $\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ b \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ c\end{array}\right]$, which is a cuboid.

FIGURE 3
Volume $=|a b c|$.
3. If one of the 3 column vectors is $\mathbf{0}$, we will have a flat parallelepiped. Note a flat parallelepiped has volume 0.

Remark: We can also compute the area by base \times height $=5 \times 3=15$.
Example 3. Find the area of the parallelogram whose vertices are listed.
$(0,-2),(5,-2),(-3,1),(2,1)$
ANS: To use Thy, we can translate one vertex to the origin. For example, substract $(0,-2)$ from each vertex to get a new parallelogram with Vertices $(0,0),(5,0),(-3,3),(2,3)$

Then the new parallelogram has the same area as the original

$$
\left|\operatorname{det}\left[\begin{array}{cc}
5 & -3 \\
0 & 3
\end{array}\right]\right|=15
$$ Linear Transformations

Theorem 10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot\{\text { area of } S\}
$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^{3}, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det} A| \cdot\{\text { volume of } S\}
$$

Example 4. Let S be the parallelogram determined by the vectors $\mathbf{b}_{1}=\left[\begin{array}{r}4 \\ -7\end{array}\right]$, and $\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and let $A=\left[\begin{array}{ll}5 & 2 \\ 1 & 1\end{array}\right]$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
ANS: Method 1. We use The 10.

$$
\left.|\operatorname{det} A|=\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right| \right\rvert\,=3
$$

- \{area of s $\} \xrightarrow{\text { Th } 9}\left|\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right|=\left|\begin{array}{cc}4 & 0 \\ -7 & 1\end{array}\right|=4$

Thus $\{$ area of $A(s)\}=|\operatorname{det} A| \cdot\{$ areas of $s\}$

$$
=3 \times 4=12
$$

Method 2. We can compute $\vec{A} \vec{b}_{1}$ and $A \vec{b}_{2}$, then use Thm 9 .

$$
A\left[\begin{array}{ll}
\vec{b}_{1} & \vec{b}_{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
-7 & 1
\end{array}\right]=\left[\begin{array}{cc}
6 & 2 \\
-3 & 1
\end{array}\right]
$$

Then the area is

$$
\left|\begin{array}{cc}
6 & 2 \\
-3 & 1
\end{array}\right|=6+6=12 .
$$

Exercise 5. Determine the value of the parameter s for which the system has a unique solution, and describe the solution.

$$
\begin{aligned}
& 3 s x_{1}+5 x_{2}=3 \\
& 12 x_{1}+5 s x_{2}=2
\end{aligned}
$$

ANS. The system is equivalent to $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}3 s & 5 \\ 12 & 5 s\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. We compute $A_{1}(\mathbf{b})=\left[\begin{array}{rr}3 & 5 \\ 2 & 5 s\end{array}\right], A_{2}(\mathbf{b})=\left[\begin{array}{ll}3 s & 3 \\ 12 & 2\end{array}\right], \operatorname{det} A_{1}(\mathbf{b})=15 s-10, \operatorname{det} A_{2}(\mathbf{b})=6 s-36$.
Since $\operatorname{det} A=15 s^{2}-60=15\left(s^{2}-4\right)=0$ for $s= \pm 2$, the system will have a unique solution for all values of $s \neq \pm 2$. For such a system, the solution will be

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(\mathbf{b})}{\operatorname{det} A}=\frac{15 s-10}{15\left(s^{2}-4\right)}=\frac{3 s-2}{3\left(s^{2}-4\right)} \\
& x_{2}=\frac{\operatorname{det} A_{2}(\mathbf{b})}{\operatorname{det} A}=\frac{6 s-36}{15\left(s^{2}-4\right)}=\frac{2 s-12}{5\left(s^{2}-4\right)}
\end{aligned}
$$

Exercise 6. Find a formula for the area of the triangle whose vertices are $\mathbf{0}, \mathbf{v}_{1}$, and \mathbf{v}_{2} in \mathbb{R}^{2}.
ANS. The area of the triangle will be one half of the area of the parallelogram determined by \mathbf{v}_{1} and \mathbf{v} By Theorem 9, the area of the triangle will be (1/2)| $\operatorname{det} A \mid$, where $A=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$.

Exercise 7. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,3,0),(-2,0,2)$, and ($-1,3,-1$).
ANS. The parallelepiped is determined by the columns of $A=\left[\begin{array}{rrr}1 & -2 & -1 \\ 3 & 0 & 3 \\ 0 & 2 & -1\end{array}\right]$, so the volume of the parallelepiped is $|\operatorname{det} A|=|-18|=18$.

